Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Small ; : e2309270, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431940

RESUMO

The lower respiratory tract is a hierarchical network of compliant tubular structures that are made from extracellular matrix proteins with a wall lined by an epithelium. While microfluidic airway-on-a-chip models incorporate the effects of shear and stretch on the epithelium, week-long air-liquid-interface culture at physiological shear stresses, the circular cross-section, and compliance of native airway walls have yet to be recapitulated. To overcome these limitations, a collagen tube-based airway model is presented. The lumen is lined with a confluent epithelium during two-week continuous perfusion with warm, humid air while presenting culture medium from the outside and compensating for evaporation. The model recapitulates human small airways in extracellular matrix composition and mechanical microenvironment, allowing for the first time dynamic studies of elastocapillary phenomena associated with regular breathing and mechanical ventilation, as well as their impacts on the epithelium. A case study reveales increasing damage to the epithelium during repetitive collapse and reopening cycles as opposed to overdistension, suggesting expiratory flow resistance to reduce atelectasis. The model is expected to promote systematic comparisons between different clinically used ventilation strategies and, more broadly, to enhance human organ-on-a-chip platforms for a variety of tubular tissues.

2.
Lab Chip ; 24(4): 668-679, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38226743

RESUMO

We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per µL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.


Assuntos
Colorimetria , Microfluídica , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Rotação
3.
Lab Chip ; 24(2): 182-196, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38044704

RESUMO

The intensive workload associated with the preparation of high-quality DNA libraries remains a key obstacle toward widespread deployment of sequencing technologies in remote and resource-limited areas. We describe the development of single-use microfluidic devices driven by an advanced pneumatic centrifugal microfluidic platform, the PowerBlade, to automate the preparation of Illumina-compatible libraries based on adaptor ligation methodology. The developed on-chip workflow includes enzymatic DNA fragmentation coupled to end-repair, adaptor ligation, first DNA cleanup, PCR amplification, and second DNA cleanup. This complex workflow was successfully integrated into simple thermoplastic microfluidic devices that are amenable to mass production with injection molding. The system was validated by preparing, on chip, libraries from a mixture of genomic DNA extracted from three common foodborne pathogens (Listeria monocytogenes, Escherichia coli and Salmonella enterica serovar Typhimurium) and comparing them with libraries made via a manual procedure. The two types of libraries were found to exhibit similar quality control metrics (including genome coverage, assembly, and relative abundances) and led to nearly uniform coverage independent of GC content. This microfluidic technology offers a time-saving and cost-effective alternative to manual procedures and robotic-based automation, making it suitable for deployment in remote environments where technical expertise and resources might be scarce. Specifically, it facilitates field practices that involve mid- to low-throughput sequencing, such as tasks related to foodborne pathogen detection, characterization, and microbial profiling.


Assuntos
Microfluídica , Salmonella typhimurium , DNA Bacteriano/genética , Salmonella typhimurium/genética , Escherichia coli/genética , Automação , Oligonucleotídeos
4.
Bioact Mater ; 33: 46-60, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38024233

RESUMO

The successful translation of organ-on-a-chip devices requires the development of an automated workflow for device fabrication, which is challenged by the need for precise deposition of multiple classes of materials in micro-meter scaled configurations. Many current heart-on-a-chip devices are produced manually, requiring the expertise and dexterity of skilled operators. Here, we devised an automated and scalable fabrication method to engineer a Biowire II multiwell platform to generate human iPSC-derived cardiac tissues. This high-throughput heart-on-a-chip platform incorporated fluorescent nanocomposite microwires as force sensors, produced from quantum dots and thermoplastic elastomer, and 3D printed on top of a polystyrene tissue culture base patterned by hot embossing. An array of built-in carbon electrodes was embedded in a single step into the base, flanking the microwells on both sides. The facile and rapid 3D printing approach efficiently and seamlessly scaled up the Biowire II system from an 8-well chip to a 24-well and a 96-well format, resulting in an increase of platform fabrication efficiency by 17,5000-69,000% per well. The device's compatibility with long-term electrical stimulation in each well facilitated the targeted generation of mature human iPSC-derived cardiac tissues, evident through a positive force-frequency relationship, post-rest potentiation, and well-aligned sarcomeric apparatus. This system's ease of use and its capacity to gauge drug responses in matured cardiac tissue make it a powerful and reliable platform for rapid preclinical drug screening and development.

5.
Polymers (Basel) ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236176

RESUMO

Freestanding, flexible and open through-hole polymeric micro- and nanostructured membranes were successfully fabricated over large areas (>16 cm2) via solvent removal of sacrificial scaffolds filled with polymer resin by spontaneous capillary flow. Most of the polymeric membranes were obtained through a rapid UV curing processes via cationic or free radical UV polymerisation. Free standing microstructured membranes were fabricated across a range of curable polymer materials, including: EBECRYL3708 (radical UV polymerisation), CUVR1534 (cationic UV polymerisation) UV lacquer, fluorinated perfluoropolyether urethane methacrylate UV resin (MD700), optical adhesive UV resin with high refractive index (NOA84) and medical adhesive UV resin (1161-M). The present method was also extended to make a thermal set polydimethylsiloxane (PDMS) membranes. The pore sizes for the as-fabricated membranes ranged from 100 µm down to 200 nm and membrane thickness could be varied from 100 µm down to 10 µm. Aspect ratios as high as 16.7 were achieved for the 100 µm thick membranes for pore diameters of approximately 6 µm. Wide-area and uniform, open through-hole 30 µm thick membranes with 15 µm pore size were fabricated over 44 × 44 mm2 areas. As an application example, arrays of Au nanodots and Pd nanodots, as small as 130 nm, were deposited on Si substrates using a nanoaperture polymer through-hole membrane as a stencil.

6.
Lab Chip ; 22(17): 3157-3171, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35670202

RESUMO

Testing for SARS-CoV-2 is one of the most important assets in COVID-19 management and mitigation. At the onset of the pandemic, SARS-CoV-2 testing was uniquely performed in central laboratories using RT-qPCR. RT-qPCR relies on trained personnel operating complex instrumentation, while time-to-result can be lengthy (e.g., 24 to 72 h). Now, two years into the pandemic, with the surge in cases driven by the highly transmissible Omicron variant, COVID-19 testing capabilities have been stretched to their limit worldwide. Rapid antigen tests are playing an increasingly important role in quelling outbreaks by expanding testing capacity outside the realm of clinical laboratories. These tests can be deployed in settings where repeat and rapid testing is essential, but they often come at the expense of limited accuracy and sensitivity. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) provides a number of advantages to SARS-CoV-2 testing in standard laboratories and at the point-of-need. In contrast to RT-qPCR, RT-LAMP is performed at a constant temperature, which circumvents the need for thermal cycling and translates into a shorter analysis time (e.g., <1 h). In addition, RT-LAMP is compatible with colorimetric detection, facilitating visualization and read-out. However, even with these benefits, RT-LAMP is not yet clinically deployed at its full capacity. Lack of automation and integration of sample preparation, such as RNA extraction, limits the sensitivity and specificity of the method. Furthermore, the need for cold storage of reagents complicates its use at the point of need. The developments presented in this work address these limitations: We describe a fully automated SARS-CoV-2 detection method using RT-LAMP, which also includes up-front lysis and extraction of viral RNA, performed on a centrifugal platform with active pneumatic pumping, a disposable, all-polymer-based microfluidic cartridge and lyophilized reagents. We demonstrate that the limit of detection of the RT-LAMP assay itself is 0.2 copies per µL using N and E genes as target sequences. When combined with integrated RNA extraction, the assay sensitivity is 0.5 copies per µL, which is highly competitive to RT-qPCR. We tested the automated assay using 12 clinical swab specimens from patients and were able to distinguish positive and negative samples for SARS-CoV-2 within 60 min, thereby obtaining 100% agreement with RT-qPCR results.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Humanos , Microfluídica , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Patologia Molecular , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
7.
ACS Appl Polym Mater ; 4(8): 5287-5297, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552739

RESUMO

We investigate the use of periodic micropillar arrays produced by high-fidelity microfabrication with cyclic olefin polymers for solid-phase immunoassays. These three-dimensional (3D) templates offer higher surface-to-volume ratios than two-dimensional substrates, making it possible to attach more antibodies and so increase the signal obtained by the assay. Micropillar arrays also provide the capacity to induce wicking, which is used to distribute and confine antibodies on the surface with spatial control. Micropillar array substrates are modified by using oxygen plasma treatment, followed by grafting of (3-aminopropyl)triethoxysilane for binding proteins covalently using glutaraldehyde as a cross-linker. The relationship between microstructure and fluorescence signal was investigated through variation of pitch (10-50 µm), pillar diameter (5-40 µm), and pillar height (5-57 µm). Our findings suggest that signal intensity scales proportionally with the 3D surface area available for performing solid-phase immunoassays. A linear relationship between fluorescence intensity and microscale structure can be maintained even when the aspect ratio and pillar density both become very high, opening the possibility of tuning assay response by design such that desired signal intensity is obtained over a wide dynamic range compatible with different assays, analyte concentrations, and readout instruments. We demonstrate the versatility of the approach by performing the most common immunoassay formats-direct, indirect, and sandwich-in a qualitative fashion by using colorimetric and fluorescence-based detection for a number of clinically relevant protein markers, such as tumor necrosis factor alpha, interferon gamma (IFN-γ), and spike protein of severe acute respiratory syndrome coronavirus 2. We also show quantitative detection of IFN-γ in serum using a fluorescence-based sandwich immunoassay and calibrated samples with spike-in concentrations ranging from 50 pg/mL to 5 µg/mL, yielding an estimated limit of detection of ∼1 pg/mL for arrays with high micropillar density (11561 per mm2) and aspect ratio (1:11.35).

8.
Langmuir ; 38(1): 79-85, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34928624

RESUMO

This paper describes on-the-fly physical property changes of aqueous two-phase systems (ATPS) in microfluidic devices. The properties and phases of the ATPS are modulated on-demand by using a centrifugal microfluidic device filled with poly(ethylene glycol) (PEG) and dextran (DEX) solutions. By use of the centrifugal force and active pneumatic controls provided by a centrifugal microfluidic platform (CMP), PEG-DEX mixtures are manipulated and processed inside simple thermoplastic microfluidic devices. First, we experimentally demonstrate an on-chip ATPS transition from two phases to a single phase and vice versa by dynamically changing the concentration of the solution to bring ATPS across the binodal curve. We also demonstrate a density modulation scheme by introducing an ATPS solution mixed with sodium diatrizoate hydrate, which allows to increase the liquid density. By adding precisely metered volumes of water, we spontaneously change the density of the solution on the CMP and show that density marker microbeads fall into the solution according to their corresponding densities. The measured densities of ATPS show a good agreement with densities of microbeads and analytical plots. The results presented in this paper highlight the tremendous potential of CMPs for performing complex on-chip processing of ATPS. We anticipate that this method will be useful in applications such as microparticle-based plasma protein analysis and blood cell fractionation.


Assuntos
Microfluídica , Água , Dispositivos Lab-On-A-Chip , Microesferas , Polietilenoglicóis
9.
Lab Chip ; 21(21): 4060-4070, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34604897

RESUMO

Fractionating whole blood and separating its constituent components one from another is an essential step in many clinical applications. Currently blood sample handling and fractionation processes remain a predominantly manual task that require well-trained operators to produce reliable and reproducible results. Herein, we demonstrate an advanced on-chip whole human blood fractionation and cell isolation process combining (i) an aqueous two-phase system (ATPS) to create complex separation layers with (ii) a centrifugal microfluidic platform (PowerBlade) with active pneumatic pumping to control and automate the assay. We use a polyethylene glycol (PEG) and dextran (DEX) mixture as the two-phase density gradient media and our automated centrifugal microfluidic platform to fractionate blood samples. Different densities of precisely tuned PEG-DEX solutions were tested to match each of the cell types typically targeted during blood fractionation applications. By employing specially designed microfluidic devices, we demonstrate the automation of the following steps: loading of a whole blood sample on-chip, layering of the blood on the ATPS solution, blood fractionation, precise radial repositioning of the fractionated layers, and finally extraction of multiple, selected fractionated components. Fractionation of up to six distinct layers is shown: platelet-rich plasma, buffy coat, PEG, DEX with neutrophils, red blood cells (RBCs) and high density gradient media (HDGM). Furthermore, through controlled dispensing of HDGM to the fractionation chamber, we show that each of the fractionated layers can be repositioned radially, on-the-fly, without disturbing the interfaces, allowing precise transfer of target fractions and cell types into external vials via a chip-to-world interface. Cell counting analysis and cell viability studies showed equivalence to traditional, manual methods. An overall cell viability greater than 90% of extracted cells demonstrates that the proposed approach is suitable for cell isolation applications. This proof-of-principle demonstration highlights the utility of the proposed system for automated whole blood fractionation and isolation for blood cell applications. We anticipate that the proposed approach will be a useful tool for many clinical applications such as standard cell isolation procedures and other bioanalytical assays (e.g., circulating tumor cells, and cell and gene therapy).


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Separação Celular , Humanos , Dispositivos Lab-On-A-Chip , Polietilenoglicóis , Água
10.
Analyst ; 146(24): 7491-7502, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34643195

RESUMO

We investigate the formation of suspended magnetic nanoparticle (MNP) assemblies (M-clouds) and their use for in situ bacterial capture and DNA extraction. M-clouds are obtained as a result of magnetic field density variations when magnetizing an array of micropillars coated with a soft ferromagnetic NiP layer. Numerical simulations suggest that the gradient in the magnetic field created by the pillars is four orders of magnitude higher than the gradient generated by the external magnets. The pillars therefore serve as the sole magnetic capture sites for MNPs which accumulate on opposite sides of each pillar facing the magnets. Composed of loosely aggregated MNPs, the M-cloud can serve as a porous capture matrix for target analyte flowing through the array. The concept is demonstrated by using a multifunctional M-cloud comprising immunomagnetic NPs (iMNPs) for capture of Escherichia coli O157:H7 from river water along with silica-coated NPs for subsequent isolation and purification of microbial DNA released upon bacterial lysis. Confocal microscopy imaging of fluorescently labeled iMNPs and E. coli O157:H7 reveals that bacteria are trapped in the M-cloud region between micropillars. Quantitative assessment of in situ bacterial capture, lysis and DNA isolation using real-time polymerase chain reaction shows linear correlation between DNA output and input bacteria concentration, making it possible to confirm E. coli 0157:H7 at 103 cells per mL. The M-cloud method further provides one order of magnitude higher DNA output concentrations than incubation of the sample with iMNPs in a tube for an equivalent period of time (e.g., 10 min). Results from assays performed in the presence of Listeria monocytogenes (at 106 cells per mL each) suggest that non-target organisms do not affect on-chip E. coli capture, DNA extraction efficiency and quality of the eluted sample.


Assuntos
Escherichia coli O157 , Listeria monocytogenes , Nanopartículas de Magnetita , DNA , Escherichia coli O157/genética , Separação Imunomagnética
11.
Analyst ; 146(13): 4226-4234, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34095908

RESUMO

DNA hybridization phenomena occurring on solid supports are not understood as clearly as aqueous phase hybridizations and mathematical models cannot predict some empirically obtained results. Ongoing research has identified important parameters but remains incomplete to accurately account for all interactions. It has previously been shown that the length of the overhanging (dangling) end of the target DNA strand following hybridization to the capture probe is correlated to interactions with the complementary strand in solution which can result in unbinding of the target and its release from the surface. We have developed an instrument for real-time monitoring of DNA hybridization on spherical particles functionalized with oligonucleotide capture probes and arranged in the form of a tightly packed monolayer bead bed inside a microfluidic cartridge. The instrument is equipped with a pneumatic module to mediate displacement of fluid on the cartridge. We compared this system to both conventional (passive) and centrifugally-driven (active) microfluidic microarray hybridization on glass slides to establish performance levels for the detection of single nucleotide polymorphisms. The system was also used to study the effect of the dangling end's length in real-time when the immobilized target DNA is exposed to the complementary strand in solution. Our findings indicate that increasing the length of the dangling end leads to desorption of target amplicons from bead-bound capture probes at a rate approaching that of the initial hybridization process. Finally, bead bed hybridization was performed with Streptococcus agalactiae cfb gene amplicons obtained from randomized clinical samples, which allowed for identification of group B streptococci within 5-15 min. The methodology presented here is useful for investigating competitive hybridization mechanisms on solid supports and to rapidly validate the suitability of microarray capture probes.


Assuntos
DNA , Microfluídica , DNA/genética , Sondas de DNA/genética , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética
12.
Langmuir ; 36(47): 14333-14341, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179927

RESUMO

We present new observations of aqueous two-phase system (ATPS) thermodynamic and interfacial phenomena that occur inside sessile droplets due to water evaporation. Sessile droplets that contain polymeric solutions, which are initially in equilibrium in a single phase, are observed at their three-phase liquid-solid-air contact line. As evaporation of a sessile droplet proceeds, we find that submicron secondary water-in-water (W/W) droplets emerge spontaneously at the edges of the mother sessile droplet due to the resulting phase separation from water evaporation. To understand this phenomenon, we first study the secondary W/W droplet formation process on different substrate materials, namely, glass, polycarbonate (PC), thermoplastic elastomer (TPE), poly(dimethylsiloxane)-coated glass slide (PDMS substrate), and Teflon-coated glass slide (Teflon substrate), and show that secondary W/W droplet formation arises only in lower-contact-angle substrates near the three-phase contact line. Next, we characterize the size of the emergent secondary W/W droplets as a function of time. We observe that W/W drops are formed, coalesced, aligned, and trapped along the contact line of the mother droplet. We demonstrate that this W/W multiple emulsion system can be used to encapsulate magnetic particles and blood cells, and achieve size-based separation. Finally, we show the applicability of this system for protein sensing. This is the first experimental observation of evaporation-induced secondary W/W droplet generation in a sessile droplet. We anticipate that the phenomena described here may be applicable to some biological assay applications, for example, biomarker detection, protein sensing, and point-of-care diagnostic testing.

13.
Analyst ; 145(21): 6831-6845, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33005914

RESUMO

The development of technology for the rapid, automated identification of bacterial culture isolates can help regulatory agencies to shorten response times in food safety surveillance, compliance, and enforcement as well as outbreak investigations. While molecular methods such as polymerase chain reaction (PCR) enable the identification of microbial organisms with high sensitivity and specificity, they generally rely on sophisticated instrumentation and elaborate workflows for sample preparation with an undesirably high level of hands-on engagement. Herein, we describe the design, operation and performance of a lab-on-a-chip system integrating thermal lysis, PCR amplification and microarray hybridization on the same cartridge. The assay is performed on a centrifugal microfluidic platform that allows for pneumatic actuation of liquids during rotation, making it possible to perform all fluidic operations in a fully-automated fashion without the need for integrating active control elements on the microfluidic cartridge. The cartridge, which is fabricated from hard and soft thermoplastic polymers, is compatible with high-volume manufacturing (e.g., injection molding). Chip design and thermal interface were both optimized to ensure efficient heat transfer and allow for fast thermal cycling during the PCR process. The integrated workflow comprises 14 steps and takes less than 2 h to complete. The only manual steps are related to loading of the sample and reagents on the cartridge as well as fluorescence imaging of the microarray. On-chip lysis and PCR amplification both provided results comparable to those obtained by bench-top instrumentation. The microarray, incorporating a panel of oligonucleotide probes for multiplexed detection of seven enterohemorrhagic E. coli priority serotypes, was implemented on a cyclic olefin copolymer substrate using a novel activation scheme that involves the conversion of hydroxyl groups (derived from oxygen plasma treatment) into reactive cyanate ester using cyanogen bromide. On-chip hybridization was demonstrated in a non-quantitative fashion using fluorescently-labelled gene markers for E. coli O157:H7 (rfbO157, eae, vt1, and vt2) obtained through a multiplexed PCR amplification step.


Assuntos
Escherichia coli Êntero-Hemorrágica , Dispositivos Lab-On-A-Chip , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos
14.
J Vis Exp ; (160)2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32658205

RESUMO

A multiplexed droplet PCR (mdPCR) workflow and detailed protocol for determining epigenetic-based white blood cell (WBC) differential count is described, along with a thermoplastic elastomer (TPE) microfluidic droplet generation device. Epigenetic markers are used for WBC subtyping which is of important prognostic value in different diseases. This is achieved through the quantification of DNA methylation patterns of specific CG-rich regions in the genome (CpG loci). In this paper, bisulfite-treated DNA from peripheral blood mononuclear cells (PBMCs) is encapsulated in droplets with mdPCR reagents including primers and hydrolysis fluorescent probes specific for CpG loci that correlate with WBC sub-populations. The multiplex approach allows for the interrogation of many CpG loci without the need for separate mdPCR reactions, enabling more accurate parametric determination of WBC sub-populations using epigenetic analysis of methylation sites. This precise quantification can be extended to different applications and highlights the benefits for clinical diagnosis and subsequent prognosis.


Assuntos
Metilação de DNA/fisiologia , Testes Hematológicos/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Polímeros/química , Humanos , Leucócitos Mononucleares/química
15.
Lab Chip ; 20(17): 3091-3095, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32588014

RESUMO

We present here a new method for controlling the droplet size in step emulsification processes on a centrifugal microfluidic platform, which, in addition to the centrifugal force, uses pneumatic actuation for fluid displacement. We highlight the importance of the interplay between buoyancy effects and the flow rate at the step junction, and provide a simple analytical model relating these two quantities to the size of the droplets. Numerical models as well as experiments with water-in-oil emulsions are performed in support of the proposed model.

16.
Biomed Microdevices ; 22(2): 29, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32318839

RESUMO

Chronic kidney disease (CKD) typically evolves over many years in a latent period without clinical signs, posing key challenges to detection at relatively early stages of the disease. Accurate and timely diagnosis of CKD enable effective management of the disease and may prevent further progression. However, long turn-around times of current testing methods combined with their relatively high cost due to the need for established laboratory infrastructure, specialized instrumentation and trained personnel are drawbacks for efficient assessment and monitoring of CKD, especially in underserved and resource-poor locations. Among the emerging clinical laboratory approaches, microfluidic technology has gained increasing attention over the last two decades due to the possibility of miniaturizing bioanalytical assays and instrumentation, thus potentially improving diagnostic performance. In this article, we review current developments related to the detection of CKD biomarkers using microfluidics. A general trend in this emerging area is the search for novel, sensitive biomarkers for early detection of CKD using technology that is improved by means of microfluidics. It is anticipated that these innovative approaches will be soon adopted and utilized in both clinical and point-of-care settings, leading to improvements in life quality of patients.


Assuntos
Rim/metabolismo , Dispositivos Lab-On-A-Chip , Insuficiência Renal Crônica/metabolismo , Biomarcadores/metabolismo , Humanos
17.
Anal Chem ; 92(11): 7738-7745, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32292034

RESUMO

We describe the use of periodic micropillar arrays, produced from cyclic olefin copolymer using high-fidelity microfabrication, as templates for colorimetric DNA detection. The assay involves PCR-amplified gene markers for E. coli O157:H7 (rfbO157, eae, vt1, and vt2) incorporating a detectable digoxigenin label, which is revealed through an immunoenzymatic process following hybridization with target-specific oligonucleotide capture probes. The capacity of micropillar arrays to induce wicking is used to distribute and confine capture probes with spatial control, making it possible to achieve a uniform signal while allowing multiple, independent probes to be arranged in close proximity on the same substrate. The kinetic profile of color pigment formation on the surface was followed using absorbance measurements, showing maximum signal increase between 20 and 60 min of reaction time. The relationship between microstructure and colorimetric signal was investigated through variation of geometric parameters, such as pitch (10-50 µm), pillar diameter (5-40 µm), and height (16-48 µm). Our findings suggest that signal intensity is largely influenced by the edges of the pillars and less by their height such that it deviates from a linear relationship when both aspect ratio and pillar density become very high. A theoretical model used to simulate the changes in surface composition at the molecular level suggests that differences in the temporal and spatial accumulation of assay components account for this observation.


Assuntos
Colorimetria , DNA Bacteriano/análise , Polímeros/química , DNA Bacteriano/genética , Escherichia coli O157/genética , Reação em Cadeia da Polimerase Multiplex
18.
Sci Total Environ ; 710: 135906, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926407

RESUMO

Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.


Assuntos
Metagenômica , Solo , Animais , Biodiversidade , Canadá , Água Doce , Humanos
19.
Analyst ; 144(22): 6541-6553, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31633134

RESUMO

Epigenetic markers attract increasing attention for the study of phenotypic variations, which has led to the investigation of cell-lineage DNA methylation patterns that correlate with human leukocyte populations for obtaining counts of white blood cell (WBC) subsets. Current methods of DNA methylation analysis involve genome sequencing or loci-specific quantitative PCR (qPCR). Herein, a multiplexed digital droplet PCR (ddPCR) workflow for determining epigenetic-based WBC differential count is described for the first time. A microfluidic emulsification device fabricated from a commercially available thermoplastic elastomer (e.g., Mediprene) promotes customizability and cost-effectiveness of the methodology, which are prerequisites for translation into clinical and point-of-care diagnostics. Bisulfite-treated DNA from peripheral blood mononuclear cells and whole blood is encapsulated in droplets with ddPCR reagents containing primers and fluorescent hydrolysis probes specific for CpG loci correlated with WBC sub-population types. The method enables multiplexed detection of various methylation sites within a single droplet. Both qPCR and immunofluorescence staining (IF) were conducted to validate the capacity of the ddPCR methodology to accurately determine WBC sub-populations using epigenetic analysis of methylation sites. ddPCR results correlated closely to cell proportions obtained using IF, whereas qPCR significantly underestimated these values for both high and low copy number gene targets.


Assuntos
DNA/análise , Contagem de Leucócitos/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Linfócitos T Reguladores/química , Ilhas de CpG , DNA/genética , Metilação de DNA , Elastômeros/química , Epigênese Genética , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos
20.
Lab Chip ; 19(11): 1941-1952, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30997461

RESUMO

This paper describes the development of an on-chip nucleic acid (NA) extraction assay from whole blood using a centrifugal microfluidic platform that allows for pneumatic actuation of liquids during rotation. The combination of pneumatic and centrifugal forces makes it possible to perform fluidic operations without the need for integrating active control elements on the microfluidic cartridge. The cartridge is fabricated from thermoplastic polymers (e.g., Zeonor 1060R) and features a simple design that is compatible with injection molding. In addition, the cartridge is interfaced with two external vials for off-chip storage of the blood sample and retrieval of the eluted NA solution, respectively. On-chip capture of NAs is performed using an embedded solid-phase extraction matrix composed of commercial glass microfiber filters (Whatman GF/D and GF/F). The yield of the automated, on-chip extraction protocol, determined by measuring absorbance at 260 nm, is comparable to some of the best manually operated kits (e.g., Qiagen QIAamp DNA Mini Kit) while providing low assay-to-assay variability due to the high level of control provided by the platform for each processing step. The A260/A280 and A260/A230 ratios of the absorbance spectra also reveal that protein contamination of the sample is negligible. The capability of the pneumatic platform to circulate air flux through the microfluidic conduit was used to dry leftover ethanol residues retained in the capture matrix during washing. This method, applied in combination with localized heating, proved effective for reducing ethanol contamination in eluted samples from ∼12% to 1% (v/v).


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Centrifugação/instrumentação , Dispositivos Lab-On-A-Chip , Ácidos Nucleicos/sangue , Ácidos Nucleicos/isolamento & purificação , Automação , DNA Bacteriano/sangue , DNA Bacteriano/isolamento & purificação , Desenho de Equipamento , Escherichia coli O157/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA